简化, 并不是逐句翻译, 只关注重点部分, 部分内容加入了自己的理解.
索引和数据选取.
The axis labeling information in pandas objects serves many purposes:
轴标签信息在pandas
对象中有多个用途:
- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display.
- 数据的识别交互, 这非常重要在数据分析和可视化中.
- Enables automatic and explicit data alignment.
- 能够让数据可以显式自动对齐.
- Allows intuitive getting and setting of subsets of the data set.
- 能够直观明了的设置或者获取数据集中的子集.
In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area.
在这部分中, 将着重讨论最后一点, 如何对pandas的对象进行切片获取其中的部分数据(即读写操作). 这是pandas
的开发优先关注的.
Note 注意
The Python and NumPy indexing operators
[]
and attribute operator.
provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.在
python
和numpy
中, 索引操作符[]
和属性操作符逗号, 提供了非常方便的方式访问pandas
中的数据在大多数情况下. 如果你python
的字典和numpy
的数据已经非常熟悉, 这种交互是非常直观明了的.然而, 直接使用标准操作符有一些限制, 这种操作并不是已知最高级的. 对于生产力的代码, 我们推荐你利用本章中提及的方式去访问pandas的数据.
Warning 警告
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called
chained assignment
and should be avoided. See Returning a View versus Copy.注意链式操作引发的问题.
See the MultiIndex / Advanced Indexing for
MultiIndex
and more advanced indexing documentation.查看多索引和高级索引.
See the cookbook for some advanced strategies.
cookbook还有更多的高级应用案例.
一. Different choices for indexing
索引的不同选择
Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.
(数据)对象的获取是用户的高频操作, 现在pandas
提供三种不同的多轴索引的支持.
-
.loc
is primarily label based, but may also be used with a boolean array..loc
will raiseKeyError
when the items are not found. Allowed inputs are: -
.loc
是基于标签的方式, 通常使用布尔数组. 当用户传入不存在的索引时, 会触发键值错误. 以下是允许输入的索引:-
A single label, e.g.
5
or'a'
(Note that5
is interpreted as a label of the index. This use is not an integer position along the index.). -
单个标签, 如数字或者字母, 注意数字在
loc
中将被当作标签来使用(而不是表示其数字的特性, 指示行的位置, 可以视作文本型的数字).
In [55]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])
In [56]: s.loc[3:5], 注意这里, 只是表示标签3-标签5之间的数据, 而不是数字意义上3 - 4 - 5
Out[56]:
3 b
2 c
5 d
dtype: object-
A list or array of labels
['a', 'b', 'c']
. -
一列数组的标签
-
A slice object with labels
'a':'f'
(Note that contrary to usual Python slices, both the start and the stop are included, when present in the index! See Slicing with labels and Endpoints are inclusive.) -
切片式的标签, 注意和python的切片相反, pandas是包含终点部分的数据,.(python是不包含的)
-
A boolean array (any
NA
values will be treated asFalse
). -
一个布尔数组
-
A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). -
一个函数(这个函数会返回上述的索引值内容)
See more at Selection by Label.
更多内容见使用标签选择
-
-
.iloc
is primarily integer position based (from0
tolength-1
of the axis), but may also be used with a boolean array..iloc
will raiseIndexError
if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with Python/NumPy slice semantics). Allowed inputs are: -
.iloc
是基于数字(从 整数0 到 数据长度-1 范围内)的方式. 但是也可以使用布尔型数组.- An integer e.g.
5
. - 单个数字
- A list or array of integers
[4, 3, 0]
. - 数组列表或者数组
- A slice object with ints
1:7
. - 切片对象
- A boolean array (any
NA
values will be treated asFalse
). - 布尔数组
- A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). - 可返回上述索引的函数
See more at Selection by Position, Advanced Indexing and Advanced Hierarchical.
- An integer e.g.
-
.loc
,.iloc
, and also[]
indexing can accept acallable
as indexer. See more at Selection By Callable. -
上述的三种方式均接受一个函数作为索引.
Getting values from an object with multi-axes selection uses the following notation (using .loc
as an example, but the following applies to .iloc
as well). Any of the axes accessors may be the null slice :
. Axes left out of the specification are assumed to be :
, e.g. p.loc['a']
is equivalent to p.loc['a', :]
.
上述的操作e.g
. p.loc['a']
is equivalent to p.loc['a', :]
, 二者是等价的.
Object Type | Indexers |
---|---|
Series | s.loc[indexer] |
DataFrame | df.loc[row_indexer,column_indexer] |
二. Basics
基本使用
As mentioned when introducing the data structures in the last section, the primary function of indexing with []
(a.k.a. __getitem__
for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. The following table shows return type values when indexing pandas objects with []
:
Object Type | Selection | Return Value Type |
---|---|---|
Series | series[label] |
scalar value |
DataFrame | frame[colname] |
Series corresponding to colname |
Here we construct a simple time series data set to use for illustrating the indexing functionality:
In [1]: dates = pd.date_range('1/1/2000', periods=8)
In [2]: df = pd.DataFrame(np.random.randn(8, 4),
...: index=dates, columns=['A', 'B', 'C', 'D'])
...:
In [3]: df
Out[3]:
A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
Note
None of the indexing functionality is time series specific unless specifically stated.
除非特别说明 否则没有索引功能是特定于时间序列的.
Thus, as per above, we have the most basic indexing using []
:
因此, 上述内容, 最为基本得操作是使用[]
.
In [4]: s = df['A']
In [5]: s[dates[5]]
Out[5]: -0.6736897080883706
You can pass a list of columns to []
to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:
In [6]: df
Out[6]:
A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
# 直接交换内容
In [7]: df[['B', 'A']] = df[['A', 'B']]
In [8]: df
Out[8]:
A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
2000-01-04 -0.706771 0.721555 -1.039575 0.271860
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
2000-01-07 0.577046 0.404705 -1.715002 -1.039268
2000-01-08 -1.157892 -0.370647 -1.344312 0.844885
You may find this useful for applying a transform (in-place) to a subset of the columns.
你也许会发现这对于转置数据非常有用.
Warning
pandas aligns all AXES when setting
Series
andDataFrame
from.loc
, and.iloc
.pandas允许所有的轴设置series或者dataframe, 当使用
.loc
, and.iloc
This will not modify
df
because the column alignment is before value assignment.这不会修改dataframe, 因为列对其实在赋值之前.(这句话说的是什么?)
In [9]: df[['A', 'B']]
Out[9]:
A B
2000-01-01 -0.282863 0.469112
2000-01-02 -0.173215 1.212112
2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705
2000-01-08 -1.157892 -0.370647
In [10]: df.loc[:, ['B', 'A']] = df[['A', 'B']]
In [11]: df[['A', 'B']]
Out[11]:
A B
2000-01-01 -0.282863 0.469112
2000-01-02 -0.173215 1.212112
2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705
2000-01-08 -1.157892 -0.370647
The correct way to swap column values is by using raw values:
交换两列数据的方式
In [12]: df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy()
In [13]: df[['A', 'B']]
Out[13]:
A B
2000-01-01 0.469112 -0.282863
2000-01-02 1.212112 -0.173215
2000-01-03 -0.861849 -2.104569
2000-01-04 0.721555 -0.706771
2000-01-05 -0.424972 0.567020
2000-01-06 -0.673690 0.113648
2000-01-07 0.404705 0.577046
2000-01-08 -0.370647 -1.157892
三. Attribute access
You may access an index on a Series
or column on a DataFrame
directly as an attribute:
属性操作符访问(逗号)
In [14]: sa = pd.Series([1, 2, 3], index=list('abc'))
In [15]: dfa = df.copy()
In [16]: sa.b
Out[16]: 2
In [17]: dfa.A
Out[17]:
2000-01-01 0.469112
2000-01-02 1.212112
2000-01-03 -0.861849
2000-01-04 0.721555
2000-01-05 -0.424972
2000-01-06 -0.673690
2000-01-07 0.404705
2000-01-08 -0.370647
Freq: D, Name: A, dtype: float64
In [18]: sa.a = 5
In [19]: sa
Out[19]:
a 5
b 2
c 3
dtype: int64
In [20]: dfa.A = list(range(len(dfa.index))) # ok if A already exists
In [21]: dfa
Out[21]:
A B C D
2000-01-01 0 -0.282863 -1.509059 -1.135632
2000-01-02 1 -0.173215 0.119209 -1.044236
2000-01-03 2 -2.104569 -0.494929 1.071804
2000-01-04 3 -0.706771 -1.039575 0.271860
2000-01-05 4 0.567020 0.276232 -1.087401
2000-01-06 5 0.113648 -1.478427 0.524988
2000-01-07 6 0.577046 -1.715002 -1.039268
2000-01-08 7 -1.157892 -1.344312 0.844885
In [22]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column
In [23]: dfa
Out[23]:
A B C D
2000-01-01 0 -0.282863 -1.509059 -1.135632
2000-01-02 1 -0.173215 0.119209 -1.044236
2000-01-03 2 -2.104569 -0.494929 1.071804
2000-01-04 3 -0.706771 -1.039575 0.271860
2000-01-05 4 0.567020 0.276232 -1.087401
2000-01-06 5 0.113648 -1.478427 0.524988
2000-01-07 6 0.577046 -1.715002 -1.039268
2000-01-08 7 -1.157892 -1.344312 0.844885
Warning
- You can use this access only if the index element is a valid Python identifier, e.g.
s.1
is not allowed. See here for an explanation of valid identifiers.- 你的访问应当是使用存在的索引.
- The attribute will not be available if it conflicts with an existing method name, e.g.
s.min
is not allowed, buts['min']
is possible.- 属性操作符的方式不适合用在存在冲突名称的情况, 但是[]操作符可以.
- Similarly, the attribute will not be available if it conflicts with any of the following list:
index
,major_axis
,minor_axis
,items
.- 类似的, 属性操作符同样不适用于以下存在冲突的情况.
- In any of these cases, standard indexing will still work, e.g.
s['1']
,s['min']
, ands['index']
will access the corresponding element or column.- 以上的冲突的操作, 在[]操作符下并无影响.
If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.
You can also assign a dict
to a row of a DataFrame
:
通过字典的方式对其中的行数据进行修改
In [24]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
In [25]: x.iloc[1] = {'x': 9, 'y': 99}
In [26]: x
Out[26]:
x y
0 1 3
1 9 99
2 3 5
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it creates a new attribute rather than a new column. In 0.21.0 and later, this will raise a UserWarning
:
In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
In [2]: df.two = [4, 5, 6]
UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access
In [3]: df
Out[3]:
one
0 1.0
1 2.0
2 3.0
四. Slicing ranges
切片范围
The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position section detailing the .iloc
method. For now, we explain the semantics of slicing using the []
operator.
With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:
In [27]: s[:5]
Out[27]:
2000-01-01 0.469112
2000-01-02 1.212112
2000-01-03 -0.861849
2000-01-04 0.721555
2000-01-05 -0.424972
Freq: D, Name: A, dtype: float64
In [28]: s[::2]
Out[28]:
2000-01-01 0.469112
2000-01-03 -0.861849
2000-01-05 -0.424972
2000-01-07 0.404705
Freq: 2D, Name: A, dtype: float64
In [29]: s[::-1]
Out[29]:
2000-01-08 -0.370647
2000-01-07 0.404705
2000-01-06 -0.673690
2000-01-05 -0.424972
2000-01-04 0.721555
2000-01-03 -0.861849
2000-01-02 1.212112
2000-01-01 0.469112
Freq: -1D, Name: A, dtype: float64
Note that setting works as well:
In [30]: s2 = s.copy()
In [31]: s2[:5] = 0
In [32]: s2
Out[32]:
2000-01-01 0.000000
2000-01-02 0.000000
2000-01-03 0.000000
2000-01-04 0.000000
2000-01-05 0.000000
2000-01-06 -0.673690
2000-01-07 0.404705
2000-01-08 -0.370647
Freq: D, Name: A, dtype: float64
With DataFrame, slicing inside of []
slices the rows. This is provided largely as a convenience since it is such a common operation.
In [33]: df[:3]
Out[33]:
A B C D
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [34]: df[::-1]
Out[34]:
A B C D
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
2000-01-07 0.404705 0.577046 -1.715002 -1.039268
2000-01-06 -0.673690 0.113648 -1.478427 0.524988
2000-01-05 -0.424972 0.567020 0.276232 -1.087401
2000-01-04 0.721555 -0.706771 -1.039575 0.271860
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
2000-01-02 1.212112 -0.173215 0.119209 -1.044236
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
五. Selection by label
基于标签
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called
chained assignment
and should be avoided. See Returning a View versus Copy.注意链式索引操作
Warning
.loc
is strict when you present slicers that are not compatible (or convertible) with the index type. For example using integers in aDatetimeIndex
. These will raise aTypeError
..loc是严格区分数据类型的, 假如输入的数据类型和当前的索引的数据类型不一致将直接报错
In [35]: dfl = pd.DataFrame(np.random.randn(5, 4),
....: columns=list('ABCD'),
....: index=pd.date_range('20130101', periods=5))
....:
In [36]: dfl
Out[36]:
A B C D
2013-01-01 1.075770 -0.109050 1.643563 -1.469388
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
2013-01-05 0.895717 0.805244 -1.206412 2.565646
In [4]: dfl.loc[2:3]
TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>
String likes in slicing can be convertible to the type of the index and lead to natural slicing.
In [37]: dfl.loc['20130102':'20130104']
Out[37]:
A B C D
2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524 0.413738 0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
Warning
Changed in version 1.0.0.
pandas will raise a
KeyError
if indexing with a list with missing labels. See list-like Using loc with missing keys in a list is Deprecated.pandas会报键值错误, 对不存在的标签进行索引.
pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. Every label asked for must be in the index, or a KeyError
will be raised. When slicing, both the start bound AND the stop bound are included, if present in the index. Integers are valid labels, but they refer to the label and not the position.
The .loc
attribute is the primary access method. The following are valid inputs:
- A single label, e.g.
5
or'a'
(Note that5
is interpreted as a label of the index. This use is not an integer position along the index.). - A list or array of labels
['a', 'b', 'c']
. - A slice object with labels
'a':'f'
(Note that contrary to usual Python slices, both the start and the stop are included, when present in the index! See Slicing with labels. - A boolean array.
- A
callable
, see Selection By Callable.
In [38]: s1 = pd.Series(np.random.randn(6), index=list('abcdef'))
In [39]: s1
Out[39]:
a 1.431256
b 1.340309
c -1.170299
d -0.226169
e 0.410835
f 0.813850
dtype: float64
In [40]: s1.loc['c':]
Out[40]:
c -1.170299
d -0.226169
e 0.410835
f 0.813850
dtype: float64
In [41]: s1.loc['b']
Out[41]: 1.3403088497993827
Note that setting works as well:
注意这种操作对于赋值也是可行的
In [42]: s1.loc['c':] = 0
In [43]: s1
Out[43]:
a 1.431256
b 1.340309
c 0.000000
d 0.000000
e 0.000000
f 0.000000
dtype: float64
With a DataFrame:
In [44]: df1 = pd.DataFrame(np.random.randn(6, 4),
....: index=list('abcdef'),
....: columns=list('ABCD'))
....:
In [45]: df1
Out[45]:
A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920
c 1.024180 0.569605 0.875906 -2.211372
d 0.974466 -2.006747 -0.410001 -0.078638
e 0.545952 -1.219217 -1.226825 0.769804
f -1.281247 -0.727707 -0.121306 -0.097883
In [46]: df1.loc[['a', 'b', 'd'], :]
Out[46]:
A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920
d 0.974466 -2.006747 -0.410001 -0.078638
Accessing via label slices:
In [47]: df1.loc['d':, 'A':'C']
Out[47]:
A B C
d 0.974466 -2.006747 -0.410001
e 0.545952 -1.219217 -1.226825
f -1.281247 -0.727707 -0.121306
For getting a cross section using a label (equivalent to df.xs('a')
):
等价操作
In [48]: df1.loc['a']
Out[48]:
A 0.132003
B -0.827317
C -0.076467
D -1.187678
Name: a, dtype: float64
For getting values with a boolean array:
使用布尔数组取值
In [49]: df1.loc['a'] > 0
Out[49]:
A True
B False
C False
D False
Name: a, dtype: bool
In [50]: df1.loc[:, df1.loc['a'] > 0]
Out[50]:
A
a 0.132003
b 1.130127
c 1.024180
d 0.974466
e 0.545952
f -1.281247
NA values in a boolean array propagate as False
:
NA
值会被视作False
Changed in version 1.0.2.
In [51]: mask = pd.array([True, False, True, False, pd.NA, False], dtype="boolean")
In [52]: mask
Out[52]:
<BooleanArray>
[True, False, True, False, <NA>, False]
Length: 6, dtype: boolean
In [53]: df1[mask]
Out[53]:
A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
c 1.024180 0.569605 0.875906 -2.211372
For getting a value explicitly:
# 等价操作
# this is also equivalent to ``df1.at['a','A']``
In [54]: df1.loc['a', 'A']
Out[54]: 0.13200317033032932
5.1 Slicing with labels
When using .loc
with slices, if both the start and the stop labels are present in the index, then elements located between the two (including them) are returned:
In [55]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])
In [56]: s.loc[3:5]
Out[56]:
3 b
2 c
5 d
dtype: object
If at least one of the two is absent, but the index is sorted, and can be compared against start and stop labels, then slicing will still work as expected, by selecting labels which rank between the two:
如果传入标签在index上是存在缺失的, 假如索引被排序过(或者是有序的index), 将对比于起始和结尾标签, 将返回对比后的内容.
注意这里的特性.
不管是数字类型的index
还是字符串类型的index
, 都满足只要是有序的, 均可以如此访问.
In [57]: s.sort_index()
Out[57]:
0 a
2 c
3 b
4 e
5 d
dtype: object
In [58]: s.sort_index().loc[1:6] # 关键在于这里, 要求 数据是有序的
Out[58]:
2 c
3 b
4 e
5 d
dtype: object
However, if at least one of the two is absent and the index is not sorted, an error will be raised (since doing otherwise would be computationally expensive, as well as potentially ambiguous for mixed type indexes). For instance, in the above example, s.loc[1:6]
would raise KeyError
.
缺失的index
或者是无序的index
, 都会引发错误. 这样做是非常耗费资源的, 以及潜在的问题, 在多级的index中.
For the rationale behind this behavior, see Endpoints are inclusive.
终点包含的操作
In [59]: s = pd.Series(list('abcdef'), index=[0, 3, 2, 5, 4, 2])
In [60]: s.loc[3:5]
Out[60]:
3 b
2 c
5 d
dtype: object
Also, if the index has duplicate labels and either the start or the stop label is duplicated, an error will be raised. For instance, in the above example, s.loc[2:5]
would raise a KeyError
.
index
中存在相同的label
将触发错误, 当传入的索引label
包含有这重复的label
.
For more information about duplicate labels, see Duplicate Labels.
六. Selection by position
基于位置
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called
chained assignment
and should be avoided. See Returning a View versus Copy.
pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely Python and NumPy slicing. These are 0-based
indexing. When slicing, the start bound is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError
.
The .iloc
attribute is the primary access method. The following are valid inputs:
- An integer e.g.
5
. - A list or array of integers
[4, 3, 0]
. - A slice object with ints
1:7
. - A boolean array.
- A
callable
, see Selection By Callable.
In [61]: s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2)))
In [62]: s1
Out[62]:
0 0.695775
2 0.341734
4 0.959726
6 -1.110336
8 -0.619976
dtype: float64
In [63]: s1.iloc[:3]
Out[63]:
0 0.695775
2 0.341734
4 0.959726
dtype: float64
In [64]: s1.iloc[3]
Out[64]: -1.110336102891167
Note that setting works as well:
In [65]: s1.iloc[:3] = 0
In [66]: s1
Out[66]:
0 0.000000
2 0.000000
4 0.000000
6 -1.110336
8 -0.619976
dtype: float64
With a DataFrame:
In [67]: df1 = pd.DataFrame(np.random.randn(6, 4),
....: index=list(range(0, 12, 2)),
....: columns=list(range(0, 8, 2)))
....:
In [68]: df1
Out[68]:
0 2 4 6
0 0.149748 -0.732339 0.687738 0.176444
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161
6 -0.826591 -0.345352 1.314232 0.690579
8 0.995761 2.396780 0.014871 3.357427
10 -0.317441 -1.236269 0.896171 -0.487602
Select via integer slicing:
In [69]: df1.iloc[:3]
Out[69]:
0 2 4 6
0 0.149748 -0.732339 0.687738 0.176444
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161
In [70]: df1.iloc[1:5, 2:4]
Out[70]:
4 6
2 0.301624 -2.179861
4 1.462696 -1.743161
6 1.314232 0.690579
8 0.014871 3.357427
Select via integer list:
In [71]: df1.iloc[[1, 3, 5], [1, 3]]
Out[71]:
2 6
2 -0.154951 -2.179861
6 -0.345352 0.690579
10 -1.236269 -0.487602
In [72]: df1.iloc[1:3, :]
Out[72]:
0 2 4 6
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161
In [73]: df1.iloc[:, 1:3]
Out[73]:
2 4
0 -0.732339 0.687738
2 -0.154951 0.301624
4 -0.954208 1.462696
6 -0.345352 1.314232
8 2.396780 0.014871
10 -1.236269 0.896171
# this is also equivalent to ``df1.iat[1,1]``
In [74]: df1.iloc[1, 1]
Out[74]: -0.1549507744249032
For getting a cross section using an integer position (equiv to df.xs(1)
):
In [75]: df1.iloc[1]
Out[75]:
0 0.403310
2 -0.154951
4 0.301624
6 -2.179861
Name: 2, dtype: float64
Out of range slice indexes are handled gracefully just as in Python/NumPy.
超出范围处理, 起点和终点超出范围, 返回空值, 终点超出范围, 起点开始截取到最后的位置.
# these are allowed in Python/NumPy.
In [76]: x = list('abcdef')
In [77]: x
Out[77]: ['a', 'b', 'c', 'd', 'e', 'f']
In [78]: x[4:10]
Out[78]: ['e', 'f']
In [79]: x[8:10]
Out[79]: []
In [80]: s = pd.Series(x)
In [81]: s
Out[81]:
0 a
1 b
2 c
3 d
4 e
5 f
dtype: object
In [82]: s.iloc[4:10]
Out[82]:
4 e
5 f
dtype: object
In [83]: s.iloc[8:10]
Out[83]: Series([], dtype: object)
Note that using slices that go out of bounds can result in an empty axis (e.g. an empty DataFrame being returned).
In [84]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
In [85]: dfl
Out[85]:
A B
0 -0.082240 -2.182937
1 0.380396 0.084844
2 0.432390 1.519970
3 -0.493662 0.600178
4 0.274230 0.132885
In [86]: dfl.iloc[:, 2:3], 列超出范围, 起点和终点都超出
Out[86]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]
In [87]: dfl.iloc[:, 1:3], 列, 起点没超出
Out[87]:
B
0 -2.182937
1 0.084844
2 1.519970
3 0.600178
4 0.132885
In [88]: dfl.iloc[4:6]
Out[88]:
A B
4 0.27423 0.132885
A single indexer that is out of bounds will raise an IndexError
. A list of indexers where any element is out of bounds will raise an IndexError
.
单个索引的情况下(含多个索引值列表, 即除了切片范围的情况下), 超出范围将导致错误.
>>> dfl.iloc[[4, 5, 6]]
IndexError: positional indexers are out-of-bounds
>>> dfl.iloc[:, 4]
IndexError: single positional indexer is out-of-bounds
七. Selection by callable
基于函数
.loc
, .iloc
, and also []
indexing can accept a callable
as indexer. The callable
must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.
实际上就是函数返回值而已
In [89]: df1 = pd.DataFrame(np.random.randn(6, 4),
....: index=list('abcdef'),
....: columns=list('ABCD'))
....:
In [90]: df1
Out[90]:
A B C D
a -0.023688 2.410179 1.450520 0.206053
b -0.251905 -2.213588 1.063327 1.266143
c 0.299368 -0.863838 0.408204 -1.048089
d -0.025747 -0.988387 0.094055 1.262731
e 1.289997 0.082423 -0.055758 0.536580
f -0.489682 0.369374 -0.034571 -2.484478
In [91]: df1.loc[lambda df: df['A'] > 0, :]
Out[91]:
A B C D
c 0.299368 -0.863838 0.408204 -1.048089
e 1.289997 0.082423 -0.055758 0.536580
In [92]: df1.loc[:, lambda df: ['A', 'B']]
Out[92]:
A B
a -0.023688 2.410179
b -0.251905 -2.213588
c 0.299368 -0.863838
d -0.025747 -0.988387
e 1.289997 0.082423
f -0.489682 0.369374
In [93]: df1.iloc[:, lambda df: [0, 1]]
Out[93]:
A B
a -0.023688 2.410179
b -0.251905 -2.213588
c 0.299368 -0.863838
d -0.025747 -0.988387
e 1.289997 0.082423
f -0.489682 0.369374
In [94]: df1[lambda df: df.columns[0]]
Out[94]:
a -0.023688
b -0.251905
c 0.299368
d -0.025747
e 1.289997
f -0.489682
Name: A, dtype: float64
You can use callable indexing in Series
.
In [95]: df1['A'].loc[lambda s: s > 0]
Out[95]:
c 0.299368
e 1.289997
Name: A, dtype: float64
Using these methods / indexers, you can chain data selection operations without using a temporary variable.
In [96]: bb = pd.read_csv('data/baseball.csv', index_col='id')
In [97]: (bb.groupby(['year', 'team']).sum(numeric_only=True)
....: .loc[lambda df: df['r'] > 100])
....:
Out[97]:
stint g ab r h X2b ... so ibb hbp sh sf gidp
year team ...
2007 CIN 6 379 745 101 203 35 ... 127.0 14.0 1.0 1.0 15.0 18.0
DET 5 301 1062 162 283 54 ... 176.0 3.0 10.0 4.0 8.0 28.0
HOU 4 311 926 109 218 47 ... 212.0 3.0 9.0 16.0 6.0 17.0
LAN 11 413 1021 153 293 61 ... 141.0 8.0 9.0 3.0 8.0 29.0
NYN 13 622 1854 240 509 101 ... 310.0 24.0 23.0 18.0 15.0 48.0
SFN 5 482 1305 198 337 67 ... 188.0 51.0 8.0 16.0 6.0 41.0
TEX 2 198 729 115 200 40 ... 140.0 4.0 5.0 2.0 8.0 16.0
TOR 4 459 1408 187 378 96 ... 265.0 16.0 12.0 4.0 16.0 38.0
[8 rows x 18 columns]
八. Combining positional and label-based indexing
If you wish to get the 0th and the 2nd elements from the index in the ‘A’ column, you can do:
In [98]: dfd = pd.DataFrame({'A': [1, 2, 3],
....: 'B': [4, 5, 6]},
....: index=list('abc'))
....:
In [99]: dfd
Out[99]:
A B
a 1 4
b 2 5
c 3 6
In [100]: dfd.loc[dfd.index[[0, 2]], 'A']
Out[100]:
a 1
c 3
Name: A, dtype: int64
This can also be expressed using .iloc
, by explicitly getting locations on the indexers, and using positional indexing to select things.
In [101]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')]
Out[101]:
a 1
c 3
Name: A, dtype: int64
For getting multiple indexers, using .get_indexer
:
In [102]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]
Out[102]:
A B
a 1 4
c 3 6
九. Indexing with list with missing labels is deprecated
注意使用不存在的标签进行索引, 这种方法将被逐步废弃.
Warning
Changed in version 1.0.0.
Using
.loc
or[]
with a list with one or more missing labels will no longer reindex, in favor of.reindex
.
In prior versions, using .loc[list-of-labels]
would work as long as at least 1 of the keys was found (otherwise it would raise a KeyError
). This behavior was changed and will now raise a KeyError
if at least one label is missing. The recommended alternative is to use .reindex()
.
当传入的索引标签列中只要存在有一个不存在的标签, 就会出现keyerror
的提示, 并推荐使用reindex()
(即对替换为新的索引)
For example.
In [103]: s = pd.Series([1, 2, 3])
In [104]: s
Out[104]:
0 1
1 2
2 3
dtype: int64
Selection with all keys found is unchanged.
In [105]: s.loc[[1, 2]]
Out[105]:
1 2
2 3
dtype: int64
Previous behavior
未改版之前, 是返回一个NaN值填充超出范围的数据
In [4]: s.loc[[1, 2, 3]]
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64
Current behavior
注意改版之后的变化, 多个index
, 其中有不存在的, 将直接报错
In [4]: s.loc[[1, 2, 3]]
Passing list-likes to .loc with any non-matching elements will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
Out[4]:
1 2.0
2 3.0
3 NaN
dtype: float64
9.1 Reindexing
重置索引
注意不是reset_index()
Series.reindex(*args, **kwargs)[source]
Conform Series to new index with optional filling logic.
Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and
copy=False
.
The idiomatic way to achieve selecting potentially not-found elements is via .reindex()
. See also the section on reindexing.
对于索引不存在的值, 常规方式是使用reindex()
来取值, 这种方式会对空值进行填充而不是直接报错.
这种方式实际这不算取值, 这是折中方案.
In [106]: s.reindex([1, 2, 3])
Out[106]:
1 2.0
2 3.0
3 NaN
dtype: float64
Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.
可选方案, 可以使用index.intersection
Form the intersection of two Index objects.
This returns a new Index with elements common to the index and other.
取得二者的交集索引
In [107]: labels = [1, 2, 3]
In [108]: s.loc[s.index.intersection(labels)]
Out[108]:
1 2
2 3
dtype: int64
Having a duplicated index will raise for a .reindex()
:
当存在重复值是, reindex()
将报错.
In [109]: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c'])
In [110]: labels = ['c', 'd']
In [17]: s.reindex(labels)
ValueError: cannot reindex on an axis with duplicate labels
Generally, you can intersect the desired labels with the current axis, and then reindex.
In [111]: s.loc[s.index.intersection(labels)].reindex(labels)
Out[111]:
c 3.0
d NaN
dtype: float64
However, this would still raise if your resulting index is duplicated.
虽然使用了索引交集, 但是存在重复的label
依然还是会报错.
In [41]: labels = ['a', 'd']
In [42]: s.loc[s.index.intersection(labels)].reindex(labels)
ValueError: cannot reindex on an axis with duplicate labels
十. Selecting random samples
随机样本的选取
A random selection of rows or columns from a Series or DataFrame with the sample()
method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.
In [112]: s = pd.Series([0, 1, 2, 3, 4, 5])
# When no arguments are passed, returns 1 row.
In [113]: s.sample()
Out[113]:
4 4
dtype: int64
# One may specify either a number of rows:
In [114]: s.sample(n=3)
Out[114]:
0 0
4 4
1 1
dtype: int64
# Or a fraction of the rows:
In [115]: s.sample(frac=0.5)
Out[115]:
5 5
3 3
1 1
dtype: int64
By default, sample
will return each row at most once, but one can also sample with replacement using the replace
option:
默认每一行随机样本只会返回一次, 需要多次, 可以设置参数replace
.
In [116]: s = pd.Series([0, 1, 2, 3, 4, 5])
# Without replacement (default):
In [117]: s.sample(n=6, replace=False)
Out[117]:
0 0
1 1
5 5
3 3
2 2
4 4
dtype: int64
# With replacement:
In [118]: s.sample(n=6, replace=True)
Out[118]:
0 0
4 4
3 3
2 2
4 4
4 4
dtype: int64
By default, each row has an equal probability of being selected, but if you want rows to have different probabilities, you can pass the sample
function sampling weights as weights
. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:
默认状态下每一行数据的随机可能性是相同的, 但是可以手动制定被选中的几率权重.
In [119]: s = pd.Series([0, 1, 2, 3, 4, 5])
In [120]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
In [121]: s.sample(n=3, weights=example_weights)
Out[121]:
5 5
4 4
3 3
dtype: int64
# Weights will be re-normalized automatically
In [122]: example_weights2 = [0.5, 0, 0, 0, 0, 0]
In [123]: s.sample(n=1, weights=example_weights2)
Out[123]:
0 0
dtype: int64
When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.
也可以制定列的权重.
In [124]: df2 = pd.DataFrame({'col1': [9, 8, 7, 6],
.....: 'weight_column': [0.5, 0.4, 0.1, 0]})
.....:
In [125]: df2.sample(n=3, weights='weight_column')
Out[125]:
col1 weight_column
1 8 0.4
0 9 0.5
2 7 0.1
sample
also allows users to sample columns instead of rows using the axis
argument.
In [126]: df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
In [127]: df3.sample(n=1, axis=1)
Out[127]:
col1
0 1
1 2
2 3
Finally, one can also set a seed for sample
’s random number generator using the random_state
argument, which will accept either an integer (as a seed) or a NumPy RandomState object.
In [128]: df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
# With a given seed, the sample will always draw the same rows.
In [129]: df4.sample(n=2, random_state=2)
Out[129]:
col1 col2
2 3 4
1 2 3
In [130]: df4.sample(n=2, random_state=2)
Out[130]:
col1 col2
2 3 4
1 2 3
十一. Setting with enlargement
扩增
The .loc/[]
operations can perform enlargement when setting a non-existent key for that axis.
.loc[]
在设置一个不存在的索引(标签)时, 会自动执行扩增.
In the Series
case this is effectively an appending operation.
在series
中, 这就像append
一样.
In [131]: se = pd.Series([1, 2, 3])
In [132]: se
Out[132]:
0 1
1 2
2 3
dtype: int64
In [133]: se[5] = 5.
In [134]: se
Out[134]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
A DataFrame
can be enlarged on either axis via .loc
.
在dataframe
中也一样
In [135]: dfi = pd.DataFrame(np.arange(6).reshape(3, 2),
.....: columns=['A', 'B'])
.....:
In [136]: dfi
Out[136]:
A B
0 0 1
1 2 3
2 4 5
In [137]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']
In [138]: dfi
Out[138]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
This is like an append
operation on the DataFrame
.
In [139]: dfi.loc[3] = 5
In [140]: dfi
Out[140]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
十二. Fast scalar value getting and setting
更快的操作方式, at
and iat
, 适用于单个值的访问和设置.
Since indexing with []
must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at
and iat
methods, which are implemented on all of the data structures.
Similarly to loc
, at
provides label based scalar lookups, while, iat
provides integer based lookups analogously to iloc
In [141]: s.iat[5]
Out[141]: 5
In [142]: df.at[dates[5], 'A']
Out[142]: -0.6736897080883706
In [143]: df.iat[3, 0]
Out[143]: 0.7215551622443669
You can also set using these same indexers.
你也可以像使用坐标一样.
In [144]: df.at[dates[5], 'E'] = 7
In [145]: df.iat[3, 0] = 7
at
may enlarge the object in-place as above if the indexer is missing.
at
操作, 在索引不存在的情况下, 将自动扩增dataframe
In [146]: df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7
In [147]: df
Out[147]:
A B C D E 0
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN NaN
2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN NaN
2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7.0 NaN
2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN NaN
2000-01-09 NaN NaN NaN NaN NaN 7.0
十三. Boolean indexing
布尔索引
Another common operation is the use of boolean vectors to filter the data. The operators are: |
for or
, &
for and
, and ~
for not
. These must be grouped by using parentheses, since by default Python will evaluate an expression such as df['A'] > 2 & df['B'] < 3
as df['A'] > (2 & df['B']) < 3
, while the desired evaluation order is (df['A'] > 2) & (df['B'] < 3)
.
多个布尔值对应的操作符为: |
for or
, &
for and
, and ~
for not
Using a boolean vector to index a Series works exactly as in a NumPy ndarray:
In [148]: s = pd.Series(range(-3, 4))
In [149]: s
Out[149]:
0 -3
1 -2
2 -1
3 0
4 1
5 2
6 3
dtype: int64
In [150]: s[s > 0]
Out[150]:
4 1
5 2
6 3
dtype: int64
In [151]: s[(s < -1) | (s > 0.5)]
Out[151]:
0 -3
1 -2
4 1
5 2
6 3
dtype: int64
In [152]: s[~(s < 0)]
Out[152]:
3 0
4 1
5 2
6 3
dtype: int64
You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):
In [153]: df[df['A'] > 0]
Out[153]:
A B C D E 0
2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
List comprehensions and the map
method of Series can also be used to produce more complex criteria:
适用于更为复杂的筛选, 在map
等函数中.
In [154]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
.....: 'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
.....: 'c': np.random.randn(7)})
.....:
# only want 'two' or 'three'
In [155]: criterion = df2['a'].map(lambda x: x.startswith('t'))
In [156]: df2[criterion]
Out[156]:
a b c
2 two y 0.041290
3 three x 0.361719
4 two y -0.238075
# equivalent but slower
In [157]: df2[[x.startswith('t') for x in df2['a']]]
Out[157]:
a b c
2 two y 0.041290
3 three x 0.361719
4 two y -0.238075
# Multiple criteria
In [158]: df2[criterion & (df2['b'] == 'x')]
Out[158]:
a b c
3 three x 0.361719
With the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.
混合使用, 同时使用其他的取值方式, 如切片.
In [159]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']
Out[159]:
b c
3 x 0.361719
Warning
iloc
supports two kinds of boolean indexing. If the indexer is a booleanSeries
, an error will be raised. For instance, in the following example,df.iloc[s.values, 1]
is ok. The boolean indexer is an array. Butdf.iloc[s, 1]
would raiseValueError
.需要注意,
iloc
支持两种布尔索引, 假如执行的索引是一个序列的布尔索引, 将直接报错, 需要取出其中的值来执行.
In [160]: df = pd.DataFrame([[1, 2], [3, 4], [5, 6]],
.....: index=list('abc'),
.....: columns=['A', 'B'])
.....:
In [161]: s = (df['A'] > 2)
In [162]: s
Out[162]:
a False
b True
c True
Name: A, dtype: bool
In [163]: df.loc[s, 'B'] # 注意差异和 iloc
Out[163]:
b 4
c 6
Name: B, dtype: int64
In [164]: df.iloc[s.values, 1] # 注意这里使用的是序列的值, 而不是直接的序列, 虽然这个序列是一个布尔值的序列
Out[164]:
b 4
c 6
Name: B, dtype: int64
十四. Indexing with isin
isin
执行索引
Consider the isin()
method of
Series
, which returns a boolean vector that is true wherever the Series
elements exist in the passed list. This allows you to select rows where one or more columns have values you want:
In [165]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
In [166]: s
Out[166]:
4 0
3 1
2 2
1 3
0 4
dtype: int64
In [167]: s.isin([2, 4, 6])
Out[167]:
4 False
3 False
2 True
1 False
0 True
dtype: bool
In [168]: s[s.isin([2, 4, 6])]
Out[168]:
2 2
0 4
dtype: int64
The same method is available for Index
objects and is useful for the cases when you don’t know which of the sought labels are in fact present:
In [169]: s[s.index.isin([2, 4, 6])]
Out[169]:
4 0
2 2
dtype: int64
# compare it to the following
In [170]: s.reindex([2, 4, 6])
Out[170]:
2 2.0
4 0.0
6 NaN
dtype: float64
In addition to that, MultiIndex
allows selecting a separate level to use in the membership check:
In [171]: s_mi = pd.Series(np.arange(6),
.....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
.....:
In [172]: s_mi
Out[172]:
0 a 0
b 1
c 2
1 a 3
b 4
c 5
dtype: int64
In [173]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
Out[173]:
0 c 2
1 a 3
dtype: int64
In [174]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
Out[174]:
0 a 0
c 2
1 a 3
c 5
dtype: int64
DataFrame also has an isin()
method. When calling isin
, pass a set of values as either an array or dict. If values is an array, isin
returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.
In [175]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
.....: 'ids2': ['a', 'n', 'c', 'n']})
.....:
In [176]: values = ['a', 'b', 1, 3]
In [177]: df.isin(values)
Out[177]:
vals ids ids2
0 True True True
1 False True False
2 True False False
3 False False False
Oftentimes you’ll want to match certain values with certain columns. Just make values a dict
where the key is the column, and the value is a list of items you want to check for.
In [178]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
In [179]: df.isin(values)
Out[179]:
vals ids ids2
0 True True False
1 False True False
2 True False False
3 False False False
To return the DataFrame of booleans where the values are not in the original DataFrame, use the ~
operator:
执行 ~
非操作.
In [180]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
In [181]: ~df.isin(values)
Out[181]:
vals ids ids2
0 False False True
1 True False True
2 False True True
3 True True True
Combine DataFrame’s isin
with the any()
and all()
methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:
和any
和all
一起搭配使用.
In [182]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
In [183]: row_mask = df.isin(values).all(1)
In [184]: df[row_mask]
Out[184]:
vals ids ids2
0 1 a a
十五. The [where()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.where.html## 十五. pandas.DataFrame.where) Method and Masking
where()
的使用
Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the where
method in Series
and DataFrame
.
where()
的操作保证返回的数据内容大小和series
一致.
To return only the selected rows:
In [185]: s[s > 0]
Out[185]:
3 1
2 2
1 3
0 4
dtype: int64
To return a Series of the same shape as the original:
In [186]: s.where(s > 0)
Out[186]:
4 NaN
3 1.0
2 2.0
1 3.0
0 4.0
dtype: float64
Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. where
is used under the hood as the implementation. The code below is equivalent to df.where(df < 0)
.
在df
中则等价于[]
的操作.
In [187]: df[df < 0]
Out[187]:
A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -0.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 -2.670153 -0.114722 NaN -0.048048
2000-01-08 NaN NaN -0.048788 -0.808838
In addition, where
takes an optional other
argument for replacement of values where the condition is False, in the returned copy.
额外的参数提供自动填充的功能, 对返回false
的项进行数据填充
In [188]: df.where(df < 0, -df)
Out[188]:
A B C D
2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838
You may wish to set values based on some boolean criteria. This can be done intuitively like so:
In [189]: s2 = s.copy()
In [190]: s2[s2 < 0] = 0
In [191]: s2
Out[191]:
4 0
3 1
2 2
1 3
0 4
dtype: int64
In [192]: df2 = df.copy()
In [193]: df2[df2 < 0] = 0
In [194]: df2
Out[194]:
A B C D
2000-01-01 0.000000 0.000000 0.485855 0.245166
2000-01-02 0.000000 0.390389 0.000000 1.655824
2000-01-03 0.000000 0.299674 0.000000 0.281059
2000-01-04 0.846958 0.000000 0.600705 0.000000
2000-01-05 0.669692 0.000000 0.000000 0.342416
2000-01-06 0.868584 0.000000 2.297780 0.000000
2000-01-07 0.000000 0.000000 0.168904 0.000000
2000-01-08 0.801196 1.392071 0.000000 0.000000
By default, where
returns a modified copy of the data. There is an optional parameter inplace
so that the original data can be modified without creating a copy:
In [195]: df_orig = df.copy()
In [196]: df_orig.where(df > 0, -df, inplace=True)
In [197]: df_orig
Out[197]:
A B C D
2000-01-01 2.104139 1.309525 0.485855 0.245166
2000-01-02 0.352480 0.390389 1.192319 1.655824
2000-01-03 0.864883 0.299674 0.227870 0.281059
2000-01-04 0.846958 1.222082 0.600705 1.233203
2000-01-05 0.669692 0.605656 1.169184 0.342416
2000-01-06 0.868584 0.948458 2.297780 0.684718
2000-01-07 2.670153 0.114722 0.168904 0.048048
2000-01-08 0.801196 1.392071 0.048788 0.808838
Note
The signature for
DataFrame.where()
differs fromnumpy.where()
. Roughlydf1.where(m, df2)
is equivalent tonp.where(m, df1, df2)
.
In [198]: df.where(df < 0, -df) == np.where(df < 0, df, -df)
Out[198]:
A B C D
2000-01-01 True True True True
2000-01-02 True True True True
2000-01-03 True True True True
2000-01-04 True True True True
2000-01-05 True True True True
2000-01-06 True True True True
2000-01-07 True True True True
2000-01-08 True True True True
Alignment
Furthermore, where
aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via .loc
(but on the contents rather than the axis labels).
In [199]: df2 = df.copy()
In [200]: df2[df2[1:4] > 0] = 3
In [201]: df2
Out[201]:
A B C D
2000-01-01 -2.104139 -1.309525 0.485855 0.245166
2000-01-02 -0.352480 3.000000 -1.192319 3.000000
2000-01-03 -0.864883 3.000000 -0.227870 3.000000
2000-01-04 3.000000 -1.222082 3.000000 -1.233203
2000-01-05 0.669692 -0.605656 -1.169184 0.342416
2000-01-06 0.868584 -0.948458 2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 0.168904 -0.048048
2000-01-08 0.801196 1.392071 -0.048788 -0.808838
Where can also accept axis
and level
parameters to align the input when performing the where
.
In [202]: df2 = df.copy()
In [203]: df2.where(df2 > 0, df2['A'], axis='index')
Out[203]:
A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.281059
2000-01-04 0.846958 0.846958 0.600705 0.846958
2000-01-05 0.669692 0.669692 0.669692 0.342416
2000-01-06 0.868584 0.868584 2.297780 0.868584
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196
This is equivalent to (but faster than) the following.
In [204]: df2 = df.copy()
In [205]: df.apply(lambda x, y: x.where(x > 0, y), y=df['A'])
Out[205]:
A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.281059
2000-01-04 0.846958 0.846958 0.600705 0.846958
2000-01-05 0.669692 0.669692 0.669692 0.342416
2000-01-06 0.868584 0.868584 2.297780 0.868584
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196
where
can accept a callable as condition and other
arguments. The function must be with one argument (the calling Series or DataFrame) and that returns valid output as condition and other
argument.
In [206]: df3 = pd.DataFrame({'A': [1, 2, 3],
.....: 'B': [4, 5, 6],
.....: 'C': [7, 8, 9]})
.....:
In [207]: df3.where(lambda x: x > 4, lambda x: x + 10)
Out[207]:
A B C
0 11 14 7
1 12 5 8
2 13 6 9
15.1 Mask
mask()
is the inverse boolean operation of where
.
这个函式是逆布尔操作.
In [208]: s.mask(s >= 0)
Out[208]:
4 NaN
3 NaN
2 NaN
1 NaN
0 NaN
dtype: float64
In [209]: df.mask(df >= 0) # 将大于零的值全部标记未NaN
Out[209]:
A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -0.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 -2.670153 -0.114722 NaN -0.048048
2000-01-08 NaN NaN -0.048788 -0.808838
十六. Setting with enlargement conditionally using numpy()
使用numpy
进行扩增.
An alternative to where()
is to use numpy.where()
. Combined with setting a new column, you can use it to enlarge a DataFrame where the values are determined conditionally.
对于where()
函数的备选np.where()
Consider you have two choices to choose from in the following DataFrame. And you want to set a new column color to ‘green’ when the second column has ‘Z’. You can do the following:
In [210]: df = pd.DataFrame({'col1': list('ABBC'), 'col2': list('ZZXY')})
In [211]: df['color'] = np.where(df['col2'] == 'Z', 'green', 'red')
In [212]: df
Out[212]:
col1 col2 color
0 A Z green
1 B Z green
2 B X red
3 C Y red
If you have multiple conditions, you can use numpy.select()
to achieve that. Say corresponding to three conditions there are three choice of colors, with a fourth color as a fallback, you can do the following.
搭配numpy.select()
In [213]: conditions = [
.....: (df['col2'] == 'Z') & (df['col1'] == 'A'),
.....: (df['col2'] == 'Z') & (df['col1'] == 'B'),
.....: (df['col1'] == 'B')
.....: ]
.....:
In [214]: choices = ['yellow', 'blue', 'purple']
In [215]: df['color'] = np.select(conditions, choices, default='black')
In [216]: df
Out[216]:
col1 col2 color
0 A Z yellow
1 B Z blue
2 B X purple
3 C Y black
十七. The [query()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html## 十七. pandas.DataFrame.query) Method
类似于sql
语句的执行
- 用于于复杂条件的执行.
- 对于大数据的检索效率更高.
DataFrame
objects have a query()
method that allows selection using an expression.
You can get the value of the frame where column b
has values between the values of columns a
and c
. For example:
In [217]: n = 10
In [218]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [219]: df
Out[219]:
a b c
0 0.438921 0.118680 0.863670
1 0.138138 0.577363 0.686602
2 0.595307 0.564592 0.520630
3 0.913052 0.926075 0.616184
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
6 0.792342 0.216974 0.564056
7 0.397890 0.454131 0.915716
8 0.074315 0.437913 0.019794
9 0.559209 0.502065 0.026437
# pure python
In [220]: df[(df['a'] < df['b']) & (df['b'] < df['c'])]
Out[220]:
a b c
1 0.138138 0.577363 0.686602
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
7 0.397890 0.454131 0.915716
# query, 执行cmd语句
In [221]: df.query('(a < b) & (b < c)')
Out[221]:
a b c
1 0.138138 0.577363 0.686602
4 0.078718 0.854477 0.898725
5 0.076404 0.523211 0.591538
7 0.397890 0.454131 0.915716
Do the same thing but fall back on a named index if there is no column with the name a
.
In [222]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))
In [223]: df.index.name = 'a'
In [224]: df
Out[224]:
b c
a
0 0 4
1 0 1
2 3 4
3 4 3
4 1 4
5 0 3
6 0 1
7 3 4
8 2 3
9 1 1
In [225]: df.query('a < b and b < c')
Out[225]:
b c
a
2 3 4
If instead you don’t want to or cannot name your index, you can use the name index
in your query expression:
In [226]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))
In [227]: df
Out[227]:
b c
0 3 1
1 3 0
2 5 6
3 5 2
4 7 4
5 0 1
6 2 5
7 0 1
8 6 0
9 7 9
In [228]: df.query('index < b < c')
Out[228]:
b c
2 5 6
Note
If the name of your index overlaps with a column name, the column name is given precedence. For example,
注意这里, 假如对索引进行命名, 出现覆盖了列的名称的情况, query优先使用的是索引的名称
In [229]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})
In [230]: df.index.name = 'a'
In [231]: df.query('a > 2') # uses the column 'a', not the index
Out[231]:
a
a
1 3
3 3
You can still use the index in a query expression by using the special identifier ‘index’:
但是可以使用index
来表示索引(虽然索引已经变更名称)
In [232]: df.query('index > 2')
Out[232]:
a
a
3 3
4 2
If for some reason you have a column named index
, then you can refer to the index as ilevel_0
as well, but at this point you should consider renaming your columns to something less ambiguous.
注意, 假如名称中存在index
的列, 可以使用ilevel_0
来表示index
17.1 [MultiIndex
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html### 17.1 pandas.MultiIndex) [query()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html### 17.1 pandas.DataFrame.query) Syntax
多索引的情形
You can also use the levels of a DataFrame
with a MultiIndex
as if they were columns in the frame:
In [233]: n = 10
In [234]: colors = np.random.choice(['red', 'green'], size=n)
In [235]: foods = np.random.choice(['eggs', 'ham'], size=n)
In [236]: colors
Out[236]:
array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green',
'green', 'green'], dtype='<U5')
In [237]: foods
Out[237]:
array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs',
'eggs'], dtype='<U4')
In [238]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])
In [239]: df = pd.DataFrame(np.random.randn(n, 2), index=index)
In [240]: df
Out[240]:
0 1
color food
red ham 0.194889 -0.381994
ham 0.318587 2.089075
eggs -0.728293 -0.090255
green eggs -0.748199 1.318931
eggs -2.029766 0.792652
ham 0.461007 -0.542749
ham -0.305384 -0.479195
eggs 0.095031 -0.270099
eggs -0.707140 -0.773882
eggs 0.229453 0.304418
In [241]: df.query('color == "red"')
Out[241]:
0 1
color food
red ham 0.194889 -0.381994
ham 0.318587 2.089075
eggs -0.728293 -0.090255
If the levels of the MultiIndex
are unnamed, you can refer to them using special names:
假如多层索引没有名称.
In [242]: df.index.names = [None, None]
In [243]: df
Out[243]:
0 1
red ham 0.194889 -0.381994
ham 0.318587 2.089075
eggs -0.728293 -0.090255
green eggs -0.748199 1.318931
eggs -2.029766 0.792652
ham 0.461007 -0.542749
ham -0.305384 -0.479195
eggs 0.095031 -0.270099
eggs -0.707140 -0.773882
eggs 0.229453 0.304418
In [244]: df.query('ilevel_0 == "red"')
Out[244]:
0 1
red ham 0.194889 -0.381994
ham 0.318587 2.089075
eggs -0.728293 -0.090255
The convention is ilevel_0
, which means " index level 0" for the 0th level of the index
.
用ilevel_n
来表示不同层级的索引
17.2 [query()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html### 17.2 pandas.DataFrame.query) Use Cases
A use case for query()
is when you have a collection of DataFrame
objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you’re interested in querying
In [245]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [246]: df
Out[246]:
a b c
0 0.224283 0.736107 0.139168
1 0.302827 0.657803 0.713897
2 0.611185 0.136624 0.984960
3 0.195246 0.123436 0.627712
4 0.618673 0.371660 0.047902
5 0.480088 0.062993 0.185760
6 0.568018 0.483467 0.445289
7 0.309040 0.274580 0.587101
8 0.258993 0.477769 0.370255
9 0.550459 0.840870 0.304611
In [247]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)
In [248]: df2
Out[248]:
a b c
0 0.357579 0.229800 0.596001
1 0.309059 0.957923 0.965663
2 0.123102 0.336914 0.318616
3 0.526506 0.323321 0.860813
4 0.518736 0.486514 0.384724
5 0.190804 0.505723 0.614533
6 0.891939 0.623977 0.676639
7 0.480559 0.378528 0.460858
8 0.420223 0.136404 0.141295
9 0.732206 0.419540 0.604675
10 0.604466 0.848974 0.896165
11 0.589168 0.920046 0.732716
In [249]: expr = '0.0 <= a <= c <= 0.5'
In [250]: map(lambda frame: frame.query(expr), [df, df2])
Out[250]: <map at 0x7f12a67b9940>
17.3 [query()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html### 17.3 pandas.DataFrame.query) Python versus pandas Syntax Comparison
Full numpy-like syntax:
In [251]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))
In [252]: df
Out[252]:
a b c
0 7 8 9
1 1 0 7
2 2 7 2
3 6 2 2
4 2 6 3
5 3 8 2
6 1 7 2
7 5 1 5
8 9 8 0
9 1 5 0
In [253]: df.query('(a < b) & (b < c)')
Out[253]:
a b c
0 7 8 9
In [254]: df[(df['a'] < df['b']) & (df['b'] < df['c'])]
Out[254]:
a b c
0 7 8 9
Slightly nicer by removing the parentheses (comparison operators bind tighter than &
and |
):
In [255]: df.query('a < b & b < c')
Out[255]:
a b c
0 7 8 9
Use English instead of symbols:
In [256]: df.query('a < b and b < c')
Out[256]:
a b c
0 7 8 9
Pretty close to how you might write it on paper:
In [257]: df.query('a < b < c')
Out[257]:
a b c
0 7 8 9
17.4 The in
and not in
operators
query()
also supports special use of Python’s in
and not in
comparison operators, providing a succinct syntax for calling the isin
method of a Series
or DataFrame
.
# get all rows where columns "a" and "b" have overlapping values
In [258]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
.....: 'c': np.random.randint(5, size=12),
.....: 'd': np.random.randint(9, size=12)})
.....:
In [259]: df
Out[259]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2
In [260]: df.query('a in b')
Out[260]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
# How you'd do it in pure Python
In [261]: df[df['a'].isin(df['b'])]
Out[261]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
In [262]: df.query('a not in b')
Out[262]:
a b c d
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2
# pure Python
In [263]: df[~df['a'].isin(df['b'])]
Out[263]:
a b c d
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2
You can combine this with other expressions for very succinct queries:
# rows where cols a and b have overlapping values
# and col c's values are less than col d's
In [264]: df.query('a in b and c < d')
Out[264]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
4 c b 3 6
5 c b 0 2
# pure Python
In [265]: df[df['b'].isin(df['a']) & (df['c'] < df['d'])]
Out[265]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
4 c b 3 6
5 c b 0 2
10 f c 0 6
11 f c 1 2
Note
Note that
in
andnot in
are evaluated in Python, sincenumexpr
has no equivalent of this operation. However, only thein
/not in
expression itself is evaluated in vanilla Python. For example, in the expression
df.query('a in b + c + d')
# 等价于
a in (b, c, d)
(b + c + d)
is evaluated by numexpr
and then the in
operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr
will be.
17.5 Special use of the ==
operator with list
objects
Comparing a list
of values to a column using ==
/!=
works similarly to in
/not in
.
In [266]: df.query('b == ["a", "b", "c"]')
Out[266]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2
# pure Python
In [267]: df[df['b'].isin(["a", "b", "c"])]
Out[267]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2
In [268]: df.query('c == [1, 2]')
Out[268]:
a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2
In [269]: df.query('c != [1, 2]')
Out[269]:
a b c d
1 a a 4 7
4 c b 3 6
5 c b 0 2
6 d b 3 3
8 e c 4 3
10 f c 0 6
# using in/not in
In [270]: df.query('[1, 2] in c')
Out[270]:
a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2
In [271]: df.query('[1, 2] not in c')
Out[271]:
a b c d
1 a a 4 7
4 c b 3 6
5 c b 0 2
6 d b 3 3
8 e c 4 3
10 f c 0 6
# pure Python
In [272]: df[df['c'].isin([1, 2])]
Out[272]:
a b c d
0 a a 2 6
2 b a 1 6
3 b a 2 1
7 d b 2 1
9 e c 2 0
11 f c 1 2
17.6 Boolean operators
You can negate boolean expressions with the word not
or the ~
operator.
In [273]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [274]: df['bools'] = np.random.rand(len(df)) > 0.5
In [275]: df.query('~bools')
Out[275]:
a b c bools
2 0.697753 0.212799 0.329209 False
7 0.275396 0.691034 0.826619 False
8 0.190649 0.558748 0.262467 False
In [276]: df.query('not bools')
Out[276]:
a b c bools
2 0.697753 0.212799 0.329209 False
7 0.275396 0.691034 0.826619 False
8 0.190649 0.558748 0.262467 False
In [277]: df.query('not bools') == df[~df['bools']]
Out[277]:
a b c bools
2 True True True True
7 True True True True
8 True True True True
Of course, expressions can be arbitrarily complex too:
# short query syntax
In [278]: shorter = df.query('a < b < c and (not bools) or bools > 2')
# equivalent in pure Python
In [279]: longer = df[(df['a'] < df['b'])
.....: & (df['b'] < df['c'])
.....: & (~df['bools'])
.....: | (df['bools'] > 2)]
.....:
In [280]: shorter
Out[280]:
a b c bools
7 0.275396 0.691034 0.826619 False
In [281]: longer
Out[281]:
a b c bools
7 0.275396 0.691034 0.826619 False
In [282]: shorter == longer
Out[282]:
a b c bools
7 True True True True
17.7 Performance of [query()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html### 17.7 pandas.DataFrame.query)
query()
执行效率
DataFrame.query()
using numexpr
is slightly faster than Python for large frames.
Note
You will only see the performance benefits of using the numexpr
engine with DataFrame.query()
if your frame has more than approximately 200,000 rows.
大概在超过20万行数据, 这种差异更为明显
This plot was created using a DataFrame
with 3 columns each containing floating point values generated using numpy.random.randn()
.
十八. Duplicate data
重复的数据
If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated
and drop_duplicates
. Each takes as an argument the columns to use to identify duplicated rows.
duplicated
returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.drop_duplicates
removes duplicate rows.
By default, the first observed row of a duplicate set is considered unique, but each method has a keep
parameter to specify targets to be kept.
keep='first'
(default): mark / drop duplicates except for the first occurrence.- 保留第一个出现得重复值
keep='last'
: mark / drop duplicates except for the last occurrence.- 保留最后出现得重复值
keep=False
: mark / drop all duplicates.- 删除掉所有得重复值
In [283]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
.....: 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
.....: 'c': np.random.randn(7)})
.....:
In [284]: df2
Out[284]:
a b c
0 one x -1.067137
1 one y 0.309500
2 two x -0.211056
3 two y -1.842023
4 two x -0.390820
5 three x -1.964475
6 four x 1.298329
In [285]: df2.duplicated('a')
Out[285]:
0 False
1 True
2 False
3 True
4 True
5 False
6 False
dtype: bool
In [286]: df2.duplicated('a', keep='last')
Out[286]:
0 True
1 False
2 True
3 True
4 False
5 False
6 False
dtype: bool
In [287]: df2.duplicated('a', keep=False)
Out[287]:
0 True
1 True
2 True
3 True
4 True
5 False
6 False
dtype: bool
In [288]: df2.drop_duplicates('a')
Out[288]:
a b c
0 one x -1.067137
2 two x -0.211056
5 three x -1.964475
6 four x 1.298329
In [289]: df2.drop_duplicates('a', keep='last')
Out[289]:
a b c
1 one y 0.309500
4 two x -0.390820
5 three x -1.964475
6 four x 1.298329
In [290]: df2.drop_duplicates('a', keep=False)
Out[290]:
a b c
5 three x -1.964475
6 four x 1.298329
Also, you can pass a list of columns to identify duplications.
In [291]: df2.duplicated(['a', 'b'])
Out[291]:
0 False
1 False
2 False
3 False
4 True
5 False
6 False
dtype: bool
In [292]: df2.drop_duplicates(['a', 'b'])
Out[292]:
a b c
0 one x -1.067137
1 one y 0.309500
2 two x -0.211056
3 two y -1.842023
5 three x -1.964475
6 four x 1.298329
To drop duplicates by index value, use Index.duplicated
then perform slicing. The same set of options are available for the keep
parameter.
In [293]: df3 = pd.DataFrame({'a': np.arange(6),
.....: 'b': np.random.randn(6)},
.....: index=['a', 'a', 'b', 'c', 'b', 'a'])
.....:
In [294]: df3
Out[294]:
a b
a 0 1.440455
a 1 2.456086
b 2 1.038402
c 3 -0.894409
b 4 0.683536
a 5 3.082764
In [295]: df3.index.duplicated()
Out[295]: array([False, True, False, False, True, True])
In [296]: df3[~df3.index.duplicated()]
Out[296]:
a b
a 0 1.440455
b 2 1.038402
c 3 -0.894409
In [297]: df3[~df3.index.duplicated(keep='last')]
Out[297]:
a b
c 3 -0.894409
b 4 0.683536
a 5 3.082764
In [298]: df3[~df3.index.duplicated(keep=False)]
Out[298]:
a b
c 3 -0.894409
十九. Dictionary-like [get()
](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.get.html## 十九. pandas.DataFrame.get) method
类字典的取值方式
Each of Series or DataFrame have a get
method which can return a default value.
每个series和df都有一个get方法进行取值, 和字典类似, 也可以定义一个默认值
dic = {'a': 0}
dic.get('b', default=-1)
In [299]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
In [300]: s.get('a') # equivalent to s['a']
Out[300]: 1
In [301]: s.get('x', default=-1)
Out[301]: -1
二十. Looking up values by index/column labels
Sometimes you want to extract a set of values given a sequence of row labels and column labels, this can be achieved by pandas.factorize
and NumPy indexing. For instance:
- pd.factorize
This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function [
pandas.factorize()
](https://pandas.pydata.org/docs/reference/api/pandas.factorize.html?highlight=pd factorize#pandas.factorize), and as a methodSeries.factorize()
andIndex.factorize()
.
In [302]: df = pd.DataFrame({'col': ["A", "A", "B", "B"],
.....: 'A': [80, 23, np.nan, 22],
.....: 'B': [80, 55, 76, 67]})
.....:
In [303]: df
Out[303]:
col A B
0 A 80.0 80
1 A 23.0 55
2 B NaN 76
3 B 22.0 67
In [304]: idx, cols = pd.factorize(df['col'])
In [305]: df.reindex(cols, axis=1).to_numpy()[np.arange(len(df)), idx]
Out[305]: array([80., 23., 76., 67.])
Formerly this could be achieved with the dedicated DataFrame.lookup
method which was deprecated in version 1.2.0.
lookup
方法将逐步废弃, 自1.2.0版本.
二十一. Index objects
索引对象
The pandas Index
class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index
object with duplicate entries into a set
, an exception will be raised.
索引可以设置重复值, 但是在转换带有重复值索引到set
时会触发异常.
Index
also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index
directly is to pass a list
or other sequence to Index
:
In [306]: index = pd.Index(['e', 'd', 'a', 'b'])
In [307]: index
Out[307]: Index(['e', 'd', 'a', 'b'], dtype='object')
In [308]: 'd' in index
Out[308]: True
You can also pass a name
to be stored in the index:
In [309]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')
In [310]: index.name
Out[310]: 'something'
The name, if set, will be shown in the console display:
In [311]: index = pd.Index(list(range(5)), name='rows')
In [312]: columns = pd.Index(['A', 'B', 'C'], name='cols')
In [313]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)
In [314]: df
Out[314]:
cols A B C
rows
0 1.295989 -1.051694 1.340429
1 -2.366110 0.428241 0.387275
2 0.433306 0.929548 0.278094
3 2.154730 -0.315628 0.264223
4 1.126818 1.132290 -0.353310
In [315]: df['A']
Out[315]:
rows
0 1.295989
1 -2.366110
2 0.433306
3 2.154730
4 1.126818
Name: A, dtype: float64
21.1 Setting metadata
设置元数据
Indexes are " mostly immutable" , but it is possible to set and change their name
attribute. You can use the rename
, set_names
to set these attributes directly, and they default to returning a copy.
索引对象通常是不变得, 但是有时会改变name
属性.
rename
, set_names
默认返回新得副本.
See Advanced Indexing for usage of MultiIndexes.
In [316]: ind = pd.Index([1, 2, 3])
In [317]: ind.rename("apple")
Out[317]: Int64Index([1, 2, 3], dtype='int64', name='apple')
In [318]: ind
Out[318]: Int64Index([1, 2, 3], dtype='int64')
In [319]: ind.set_names(["apple"], inplace=True)
In [320]: ind.name = "bob"
In [321]: ind
Out[321]: Int64Index([1, 2, 3], dtype='int64', name='bob')
set_names
, set_levels
, and set_codes
also take an optional level
argument
set_names
, set_levels
, and set_codes
均支持level
参数.
In [322]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
In [323]: index
Out[323]:
MultiIndex([(0, 'one'),
(0, 'two'),
(1, 'one'),
(1, 'two'),
(2, 'one'),
(2, 'two')],
names=['first', 'second'])
In [324]: index.levels[1]
Out[324]: Index(['one', 'two'], dtype='object', name='second')
In [325]: index.set_levels(["a", "b"], level=1)
Out[325]:
MultiIndex([(0, 'a'),
(0, 'b'),
(1, 'a'),
(1, 'b'),
(2, 'a'),
(2, 'b')],
names=['first', 'second'])
21.2 Set operations on Index objects
索引对象的set
操作.
The two main operations are union
and intersection
. Difference is provided via the .difference()
method.
两个主要的操作符是union
和intersection
, difference()
提供差异的数值.
In [326]: a = pd.Index(['c', 'b', 'a'])
In [327]: b = pd.Index(['c', 'e', 'd'])
In [328]: a.difference(b)
Out[328]: Index(['a', 'b'], dtype='object')
Also available is the symmetric_difference
operation, which returns elements that appear in either idx1
or idx2
, but not in both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1))
, with duplicates dropped.
symmetric_difference
, 删除掉相同值, 只保留二者差异的部分, 等价于 idx1.difference(idx2).union(idx2.difference(idx1))
In [329]: idx1 = pd.Index([1, 2, 3, 4])
In [330]: idx2 = pd.Index([2, 3, 4, 5])
In [331]: idx1.symmetric_difference(idx2)
Out[331]: Int64Index([1, 5], dtype='int64')
Important
Even though
Index
can hold missing values (NaN
), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly.注意索然索引会处理空值, 但是空值的存在会导致不确定的结果.
例如一些操作可能会隐式忽略丢失的空值(例如
sum()
).
In [332]: idx1 = pd.Index([0, 1, 2])
In [333]: idx2 = pd.Index([0.5, 1.5])
In [334]: idx1.union(idx2)
Out[334]: Float64Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64')
21.3 Missing values
处理空值
Important
Even though
Index
can hold missing values (NaN
), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly.
Index.fillna
fills missing values with specified scalar value.
填充丢失的空值
In [335]: idx1 = pd.Index([1, np.nan, 3, 4])
In [336]: idx1
Out[336]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')
In [337]: idx1.fillna(2)
Out[337]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')
In [338]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'),
.....: pd.NaT,
.....: pd.Timestamp('2011-01-03')])
.....:
In [339]: idx2
Out[339]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)
In [340]: idx2.fillna(pd.Timestamp('2011-01-02'))
Out[340]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)
二十二. Set / reset index
设置/重置索引
Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways.
22.1 Set an index
设置索引
DataFrame has a set_index()
method which takes a column name (for a regular Index
) or a list of column names (for a MultiIndex
). To create a new, re-indexed DataFrame:
In [341]: data
Out[341]:
a b c d
0 bar one z 1.0
1 bar two y 2.0
2 foo one x 3.0
3 foo two w 4.0
In [342]: indexed1 = data.set_index('c')
In [343]: indexed1
Out[343]:
a b d
c
z bar one 1.0
y bar two 2.0
x foo one 3.0
w foo two 4.0
In [344]: indexed2 = data.set_index(['a', 'b'])
In [345]: indexed2
Out[345]:
c d
a b
bar one z 1.0
two y 2.0
foo one x 3.0
two w 4.0
The append
keyword option allow you to keep the existing index and append the given columns to a MultiIndex:
append
参数, 添加索引到现有索引上.
In [346]: frame = data.set_index('c', drop=False)
In [347]: frame = frame.set_index(['a', 'b'], append=True)
In [348]: frame
Out[348]:
c d
c a b
z bar one z 1.0
y bar two y 2.0
x foo one x 3.0
w foo two w 4.0
Other options in set_index
allow you not drop the index columns or to add the index in-place (without creating a new object):
inplace
参数, 在原对象上进行.
In [349]: data.set_index('c', drop=False)
Out[349]:
a b c d
c
z bar one z 1.0
y bar two y 2.0
x foo one x 3.0
w foo two w 4.0
In [350]: data.set_index(['a', 'b'], inplace=True)
In [351]: data
Out[351]:
c d
a b
bar one z 1.0
two y 2.0
foo one x 3.0
two w 4.0
22.2 Reset the index
重置索引(不同于reindex
)
As a convenience, there is a new function on DataFrame called reset_index()
which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation of set_index()
.
和set_index()
进行的是相反的操作, 注意撤销掉索引之后, 索引的列重新放置的位置.
In [352]: data
Out[352]:
c d
a b
bar one z 1.0
two y 2.0
foo one x 3.0
two w 4.0
In [353]: data.reset_index()
Out[353]:
a b c d
0 bar one z 1.0
1 bar two y 2.0
2 foo one x 3.0
3 foo two w 4.0
The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the names
attribute.
You can use the level
keyword to remove only a portion of the index:
多层的索引, 可以制定一个level
参数来控制重置的索引.
In [354]: frame
Out[354]:
c d
c a b
z bar one z 1.0
y bar two y 2.0
x foo one x 3.0
w foo two w 4.0
In [355]: frame.reset_index(level=1)
Out[355]:
a c d
c b
z one bar z 1.0
y two bar y 2.0
x one foo x 3.0
w two foo w 4.0
reset_index
takes an optional parameter drop
which if true simply discards the index, instead of putting index values in the DataFrame’s columns.
支持一个可选参数drop
, 如果设置为True, 则将撤销索引(而不会将扯些索引重新添加到新的列上, 这种事默认的操作)
22.3 Adding an ad hoc index
增加一个 ad hoc
索引
If you create an index yourself, you can just assign it to the index
field:
data.index = index
二十三. Returning a view versus a copy
(这部分的内容见另一篇更为详细的翻译.)
When setting values in a pandas object, care must be taken to avoid what is called chained indexing
. Here is an example.
In [356]: dfmi = pd.DataFrame([list('abcd'),
.....: list('efgh'),
.....: list('ijkl'),
.....: list('mnop')],
.....: columns=pd.MultiIndex.from_product([['one', 'two'],
.....: ['first', 'second']]))
.....:
In [357]: dfmi
Out[357]:
one two
first second first second
0 a b c d
1 e f g h
2 i j k l
3 m n o p
Compare these two access methods:
In [358]: dfmi['one']['second']
Out[358]:
0 b
1 f
2 j
3 n
Name: second, dtype: object
In [359]: dfmi.loc[:, ('one', 'second')]
Out[359]:
0 b
1 f
2 j
3 n
Name: (one, second), dtype: object
These both yield the same results, so which should you use? It is instructive to understand the order of operations on these and why method 2 (.loc
) is much preferred over method 1 (chained []
).
dfmi['one']
selects the first level of the columns and returns a DataFrame that is singly-indexed. Then another Python operation dfmi_with_one['second']
selects the series indexed by 'second'
. This is indicated by the variable dfmi_with_one
because pandas sees these operations as separate events. e.g. separate calls to __getitem__
, so it has to treat them as linear operations, they happen one after another.
Contrast this to df.loc[:,('one','second')]
which passes a nested tuple of (slice(None),('one','second'))
to a single call to __getitem__
. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index both axes if so desired.
23.1 Why does assignment fail when using chained indexing?
链式操作赋值为什么失败?
The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy
warning? We don’t usually throw warnings around when you do something that might cost a few extra milliseconds!
在上一章这个只是一个执行效率的问题, 但是pandas不会为了那么一丁点事件的差异而发出一个警告.
But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this, think about how the Python interpreter executes this code:
这是因为链式操作可能产生的不可预测的结果.这需要从python的解析器执行的具体代码来查看问题.
dfmi.loc[:, ('one', 'second')] = value
# becomes
dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)
But this code is handled differently:
代码上处理的差异
# 链式操作
dfmi['one']['second'] = value
# becomes
dfmi.__getitem__('one').__setitem__('second', value)
See that __getitem__
in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether the __setitem__
will modify dfmi
or a temporary object that gets thrown out immediately afterward. That’s what SettingWithCopy
is warning you about!
注意__getitem__
的位置, 这一步的操作很难预测到底是返回视图还是一个副本(这可能取决于数组内存的占用, 这不是pandas可以控制的). 然后才执行__setitem__
, 这就会马上触发异常警告.
Note
You may be wondering whether we should be concerned about the
loc
property in the first example. Butdfmi.loc
is guaranteed to bedfmi
itself with modified indexing behavior, sodfmi.loc.__getitem__
/dfmi.loc.__setitem__
operate ondfmi
directly. Of course,dfmi.loc.__getitem__(idx)
may be a view or a copy ofdfmi
.
Sometimes a SettingWithCopy
warning will arise at times when there’s no obvious chained indexing going on. These are the bugs that SettingWithCopy
is designed to catch! pandas is probably trying to warn you that you’ve done this:
注意, 有时这个警告的触发并不是明显的链式操作中. 这是pandas的设计机制, 旨在警告用户曾试图发起类似的操作.
def do_something(df):
foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows!
# ... many lines here ...
# We don't know whether this will modify df or not!
foo['quux'] = value
return foo
Yikes!
23.2 Evaluation order matters
对于警告的处理方式.
When you use chained indexing, the order and type of the indexing operation partially determine whether the result is a slice into the original object, or a copy of the slice.
pandas has the SettingWithCopyWarning
because assigning to a copy of a slice is frequently not intentional, but a mistake caused by chained indexing returning a copy where a slice was expected.
If you would like pandas to be more or less trusting about assignment to a chained indexing expression, you can set the option mode.chained_assignment
to one of these values:
'warn'
, the default, means aSettingWithCopyWarning
is printed.'raise'
means pandas will raise aSettingWithCopyError
you have to deal with.None
will suppress the warnings entirely.
In [360]: dfb = pd.DataFrame({'a': ['one', 'one', 'two',
.....: 'three', 'two', 'one', 'six'],
.....: 'c': np.arange(7)})
.....:
# This will show the SettingWithCopyWarning
# but the frame values will be set
In [361]: dfb['c'][dfb['a'].str.startswith('o')] = 42
This however is operating on a copy and will not work.
>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb['a'].str.startswith('o')]['c'] = 42
Traceback (most recent call last)
...
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
A chained assignment can also crop up in setting in a mixed dtype frame.
Note
These setting rules apply to all of
.loc/.iloc
.The following is the recommended access method using
.loc
for multiple items (usingmask
) and a single item using a fixed index:
In [362]: dfc = pd.DataFrame({'a': ['one', 'one', 'two',
.....: 'three', 'two', 'one', 'six'],
.....: 'c': np.arange(7)})
.....:
In [363]: dfd = dfc.copy()
# Setting multiple items using a mask
In [364]: mask = dfd['a'].str.startswith('o')
In [365]: dfd.loc[mask, 'c'] = 42
In [366]: dfd
Out[366]:
a c
0 one 42
1 one 42
2 two 2
3 three 3
4 two 4
5 one 42
6 six 6
# Setting a single item
In [367]: dfd = dfc.copy()
In [368]: dfd.loc[2, 'a'] = 11
In [369]: dfd
Out[369]:
a c
0 one 0
1 one 1
2 11 2
3 three 3
4 two 4
5 one 5
6 six 6
The following can work at times, but it is not guaranteed to, and therefore should be avoided:
In [370]: dfd = dfc.copy()
In [371]: dfd['a'][2] = 111
In [372]: dfd
Out[372]:
a c
0 one 0
1 one 1
2 111 2
3 three 3
4 two 4
5 one 5
6 six 6
Last, the subsequent example will not work at all, and so should be avoided:
>>> pd.set_option('mode.chained_assignment','raise')
>>> dfd.loc[0]['a'] = 1111
Traceback (most recent call last)
...
SettingWithCopyError:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
Warning
The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.