前言
阶乘和gamma
函数关系密切.
Γ(z)=∫0∞xz−1∗e−xdx或者Γ(z+1)=∫0∞xz∗e−xdxΓ(z)=(z−1)!,z为正整数
# 在python中适用sympy来求这个积分
>>> from sympy import *
>>> import numpy as np
>>> x = symbols('x')
>>> print(integrate(x**1 * exp(-x), (x, 0, np.inf)))
1
>>> print(integrate(x**2 * exp(-x), (x, 0, np.inf)))
2
>>> print(integrate(x**3 * exp(-x), (x, 0, np.inf)))
6
多项式级数
k=1∑∞k=21n(n+1)k=1∑nk2=61n(n+1)(2n+1)k=1∑nk3=41n2(n+1)2k=1∑nkp=p+1np+1+21np+k=2∑pk!Bkpk−1np−k+1 where pk−1=(p)k−1=(p−k+1)!p!k=1∑∞k21=6π2k=1∑∞k41=90π4k=1∑∞k61=945π6k=1∑∞k2n1=(−1)n+12(2n)!B2n(2π)2n
指数级数
k=0∑∞xk=1−x1, where ∣x∣<1k=0∑nxk=x−1xn+1−1, where x=1k=m∑nzk=1−zzm−zn+1,z=1k=1∑nkzk=z(1−z)21−(n+1)zn+nzn+1,z=1k=1∑∞kzk=−ln(1−z),∣z∣<1k=1∑∞zk=1−zz,∣z∣<1k=1∑∞kzk=(1−z)2z,∣z∣<1
Harmonic级数
Harmonic series
, 调和级数
n=1∑kn1=1+21+31+41+51+⋯>ln(1+k)k=1∑∞k(−1)k+1=11−21+31−41+…=ln2k=1∑∞2k−1(−1)k+1=11−31+51−71+91−…=4π
其他
k=0∑∞k!1=0!1+1!1+2!1+3!1+4!1+…=ek=0∑∞(2k+1)!(−1)k=1!1−3!1+5!1−7!1+9!1+…=sin1k=0∑∞(−1)k2k+1x2k+1!=sin(x)k=0∑∞(2k)!(−1)k=0!1−2!1+4!1−6!1+8!1+…=cos1k=0∑∞(−1)k2kx2k!=cos(x)3+2×3×44−4×5×64+6×7×84−8×9×104+…=πk=1∑∞Tk1=11+31+61+101+151+…=2上面那个分母的规律是,sum(k,k−1,k−2,...,1)k=0∑∞(2k+1)(2k+2)1=1×21+3×41+5×61+7×81+9×101+…=ln2k=1∑∞2kk1=21+81+241+641+1601…=ln2
参考