常用级数求和公式

前言

阶乘和gamma函数关系密切.

Γ(z)=0xz1exdxΓ(z+1)=0xzexdxΓ(z)=(z1)!,  z\Gamma(z) = \int_0^{\infty}x^{z-1} * e ^{-x}\mathrm{d}x\\ 或者\\ \Gamma(z + 1) = \int_0^{\infty}x^z * e ^{-x}\mathrm{d}x\\ \\ \Gamma(z) = (z -1)!, \; z 为正整数

# 在python中适用sympy来求这个积分
>>> from sympy import *
>>> import numpy as np
>>> x = symbols('x')
>>> print(integrate(x**1 * exp(-x), (x, 0, np.inf)))
1
>>> print(integrate(x**2 * exp(-x), (x, 0, np.inf)))
2
>>> print(integrate(x**3 * exp(-x), (x, 0, np.inf)))
6

多项式级数

k=1k=12n(n+1)k=1nk2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=1nkp=np+1p+1+12np+k=2pBkk!pk1npk+1 where pk1=(p)k1=p!(pk+1)!k=11k2=π26k=11k4=π490k=11k6=π6945k=11k2n=(1)n+1B2n(2π)2n2(2n)!\sum_{k=1}^{\infty} k=\frac{1}{2} n(n+1)\\ \sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)\\ \sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}\\ \sum_{k=1}^{n} k^{p}=\frac{n^{p+1}}{p+1}+\frac{1}{2} n^{p}+\sum_{k=2}^{p} \frac{B_{k}}{k !} p^{\underline{k-1}} n^{p-k+1}\text{ where } p^{k-1}=(p)_{k-1}=\frac{p !}{(p-k+1) !}\\ \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}\\ \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}\\ \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}\\ \sum_{k=1}^{\infty} \frac{1}{k^{2 n}}=(-1)^{n+1} \frac{B_{2 n}(2 \pi)^{2 n}}{2(2 n) !}\\

指数级数

k=0xk=11x, where x<1k=0nxk=xn+11x1, where x1k=mnzk=zmzn+11z,z1k=1nkzk=z1(n+1)zn+nzn+1(1z)2,z1k=1zkk=ln(1z),z<1k=1zk=z1z,z<1k=1kzk=z(1z)2,z<1\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}, \text { where }|x|<1\\ \sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}, \text { where } x \neq 1\\ \sum_{k=m}^{n} z^{k}=\frac{z^{m}-z^{n+1}}{1-z}, z \neq 1\\ \sum_{k=1}^{n} k z^{k}=z \frac{1-(n+1) z^{n}+n z^{n+1}}{(1-z)^{2}}, z \neq 1\\ \sum_{k=1}^{\infty} \frac{z^{k}}{k}=-\ln (1-z), |z|<1\\ \sum_{k=1}^{\infty} z^{k}=\frac{z}{1-z}, |z| \lt 1\\ \sum_{k=1}^{\infty} k z^{k}=\frac{z}{(1-z)^{2}}, |z|\lt 1\\

Harmonic级数

Harmonic series, 调和级数

n=1k1n=1+12+13+14+15+>ln(1+k)k=1(1)k+1k=1112+1314+=ln2k=1(1)k+12k1=1113+1517+19=π4\sum_{n=1}^{k} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots \gt ln(1+k) %看清楚符号 \\ \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\ln 2\\ \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2 k-1}=\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots=\frac{\pi}{4}\\

其他

k=01k!=10!+11!+12!+13!+14!+=ek=0(1)k(2k+1)!=11!13!+15!17!+19!+=sin1k=0(1)kx2k+12k+1!=sin(x)k=0(1)k(2k)!=10!12!+14!16!+18!+=cos1k=0(1)kx2k2k!=cos(x)3+42×3×444×5×6+46×7×848×9×10+=πk=11Tk=11+13+16+110+115+=2,sum(k,k1,k2,...,1)k=01(2k+1)(2k+2)=11×2+13×4+15×6+17×8+19×10+=ln2k=112kk=12+18+124+164+1160=ln2\sum_{k=0}^{\infty} \frac{1}{k !}=\frac{1}{0 !}+\frac{1}{1 !}+\frac{1}{2 !}+\frac{1}{3 !}+\frac{1}{4 !}+\ldots=e\\ \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1) !}=\frac{1}{1 !}-\frac{1}{3 !}+\frac{1}{5 !}-\frac{1}{7 !}+\frac{1}{9 !}+\ldots=\sin 1\\ \sum_{k = 0}^{\infty}(-1)^k\frac{x^{2k + 1}}{2k + 1}! = \sin(x)\\ \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k) !}=\frac{1}{0 !}-\frac{1}{2 !}+\frac{1}{4 !}-\frac{1}{6 !}+\frac{1}{8 !}+\ldots=\cos 1\\ \sum_{k = 0}^{\infty}(-1)^k\frac{x^{2k}}{2k}! = \cos(x)\\ 3+\frac{4}{2 \times 3 \times 4}-\frac{4}{4 \times 5 \times 6}+\frac{4}{6 \times 7 \times 8}-\frac{4}{8 \times 9 \times 10}+\ldots=\pi\\ \sum_{k=1}^{\infty} \frac{1}{T_{k}}=\frac{1}{1}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\ldots=2\\ 上面那个分母的规律是, sum(k,k-1,k-2,...,1)\\ \sum_{k=0}^{\infty} \frac{1}{(2 k+1)(2 k+2)}=\frac{1}{1 \times 2}+\frac{1}{3 \times 4}+\frac{1}{5 \times 6}+\frac{1}{7 \times 8}+\frac{1}{9 \times 10}+\ldots=\ln 2\\ \sum_{k=1}^{\infty} \frac{1}{2^{k} k}=\frac{1}{2}+\frac{1}{8}+\frac{1}{24}+\frac{1}{64}+\frac{1}{160} \ldots=\ln 2\\

参考